Modified Legendre Wavelets Technique for Fractional Oscillation Equations

نویسندگان

  • Syed Tauseef Mohyud-Din
  • Muhammad Asad Iqbal
  • Saleh M. Hassan
چکیده

Physical Phenomena’s located around us are primarily nonlinear in nature and their solutions are of highest significance for scientists and engineers. In order to have a better representation of these physical models, fractional calculus is used. Fractional order oscillation equations are included among these nonlinear phenomena’s. To tackle with the nonlinearity arising, in these phenomena’s we recommend a new method. In the proposed method, Picard’s iteration is used to convert the nonlinear fractional order oscillation equation into a fractional order recurrence relation and then Legendre wavelets method is applied on the converted problem. In order to check the efficiency and accuracy of the suggested modification, we have considered three problems namely: fractional order force-free Duffing–van der Pol oscillator, forced Duffing–van der Pol oscillator and higher order fractional Duffing equations. The obtained results are compared with the results obtained via other techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Legendre Wavelets for Solving Fractional Differential Equations

In this paper, we develop a framework to obtain approximate numerical solutions to ordi‌nary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are uti‌lized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...

متن کامل

Fractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions

In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...

متن کامل

Solving two-dimensional fractional integro-differential equations by Legendre wavelets‎

‎In this paper‎, ‎we introduce the two-dimensional Legendre wavelets (2D-LWs)‎, ‎and develop them for solving a class of two-dimensional integro-differential equations (2D-IDEs) of fractional order‎. ‎We also investigate convergence of the method‎. ‎Finally‎, ‎we give some illustrative examples to demonstrate the validity and efficiency of the method.

متن کامل

Legendre Wavelets for Solving Fractional Differential Equations

In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the technique.

متن کامل

Legendre Wavelets Method for Fractional Integro-Differential Equations

Department of Mathematics and Sciences Dhofar University, Salalah Oman [email protected] Abstract Legendre wavelets methods are commonly used for the numerical solution of integral equations. In this paper, we apply the Legendre wavelets method to approximate the solution of fractional integro-differential equations. Numerical examples are also presented to demonstrate the validity of the method....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015